2. Categorise your data
Now that you have your codes or themes, you can use them to sort your data before summarising what it says. You can categorise data in various ways.
By hand: With a small amount of paper-based data and a small number of codes or themes, you can categorise by hand. Make a note of the codes or themes in the margin. You can then cut up the transcripts and paste them onto larger sheets of paper, one for each code or theme.
Using MS Word or Google Docs: You can take a similar approach to paper-based data. Use the comments feature to make notes in the margin, or copy and paste sections of your transcripts into a new document under each code or theme.
Using a spreadsheet: If you are using code and count, create a column for each code and put a ‘1’ in the column if that code is mentioned in the survey response. You can then use the ‘sum’ formula to count how many times the code is mentioned, and the ‘filter’ function to view all the responses for a particular code.
Using data analysis software: You can use a software package to analyse qualitative data. Quirkos is an affordable option if you are working with text. Atlas.ti enables you to work with text, images, audio, and video data. MAXQDA and NVivo are the market leaders for working with both qualitative and quantitative data. These packages allow you to code data more quickly, search for codes or groups of codes, and visualise your data in graphs or charts. If you analyse qualitative data regularly, then you may wish to invest in them.
Tips for categorising data
- Data can be categorised into more than one code or theme, but try not to do this too often.
- If using code and count, you will need to make notes of how often each code appears. You may want to create a table or tally chart to do this.
- You will need a category for ‘don’t know’, ‘no answer’ or ‘other’ responses. If ‘other’ responses make up more than 5% of your total, look at the data again to identify additional codes or themes. This helps make sure you’re not missing any important themes.
- It can be helpful to write notes to yourself as you go through your data, and highlight interesting quotes
3. Think critically about your data
Once you have categorised your data, questions you might want to ask of your data include:
- Are there any links between codes? Are some things mentioned together frequently?
- Are there any other patterns, themes, or trends? Are there any deviations from these patterns?
- Are outcomes different for different groups of people?
- Why were some outcomes achieved, and others not achieved? How does this link to the outputs?
- How do people understand their journey or story? What do they think has caused or affected the outcomes they have experienced?
- What has surprised you about the data? What has challenged your assumptions?
- Are there any gaps? What do you need to find out more about?
Make sure your analysis can be verified and you can justify the claims that you make.
- Keep a paper trail including copies of your notes and your coded data.
- Check your analysis with others. It can be helpful to have two people code some of the data to check whether the coding matches. You may also wish to check your analysis with your evaluation respondents to confirm you are representing them accurately.
- Wherever possible, check data from different sources to see if the results are the same or different.
- Check your own biases. Write down your initial views on the data and deliberately look for evidence to dis-confirm your views.
- Coding your data can result in looking at statements out of context. Check back against the rest of the data provided by a respondent to make sure you haven’t misinterpreted them.
Adapted from content from Inspiring Impact partner NCVO